Funded by ERA-NET Transport III Flagship Call 2013 "Future Travelling"

hEART September 10, 2015

erlin

Jan Vuurstaek Glenn Cich Luk Knapen Ansar Yasar

senc

universitei

Integrating OSM and GTFS to create MATSim plans using PT

- Introduction
- Problem statement
- Previous attempts made by others
- OpenStreetMap (OSM)
- General Transit Feed Specification (GTFS)
- Solution
- Results
- Brooker

Introduction

- Activity-based transport micro-simulations
 - Travel demand
 - Network loads
- Simulating public transport
 - Capacity utilization

Problem statement

- Automate integration of
 - OSM (OpenStreetMap) network
 - Public transport schedules from GTFS (General Transit Feed Specification)
- +/-31.000 bus stops in Flanders
 - No 100% positional accuracy
- Open source data is frequently updated

Previous attempts made by others

• MATSim extension: GTFS2TransitSchedule

OpenStreetMap (OSM)

- Advantages
 - Free
 - Frequent updates

- Disadvantages
 - Lack of rules for adding data
 - Inconsistent data
 - Duplicate data
 - Incorrect data (number of lanes, weakly connected network, etc.)
 - ...

OSM cleaning

- Filtering road types
- Resetting incorrect individual values
- Auto complete data (e.g. total number of lanes)
- Reset incorrect values for related quantities
- Add missing data through rules (FFspeed, capacity, BPR, ...)
- Remove links having zero length
- Merge GeneralTransportInfrastructures (includes junctions)
- Merge GeneralLinks (trivial node processing)
- Strongly maximum connected subgraph
- Split GeneralTransportInfrastructures (Digraph)

General Transit Feed Specification (GTFS)

- Minimum set of tables
 - Agency
 - Stops
 - Routes
 - Trips
 - Stop times
 - Calendar

Overview: Problem - Solution

- Problem
 - Using geometry, assign GTFS stops to road segments
 - A GTFS stop can meet several links
 - Problem: Select exactly one assignment for each GTFS stop

- Apply name based heuristic
- Assume that PT operator opts for the smallest total distance over trips (*optimization criterion*)
- Checking all possible combinations is infeasible
- Assign as many stops as possible using local context only
- Decompose into set of small optimisation problems

- Step 1: Find projected stops
- Step 2: Reduce candidates
- Step 3: Create directed graph (projected stops)
- Step 4: Assign unambiguous GTFS stops
- Step 5: Assign ambiguous non-shared GTFS stops
- Step 6: Assign ambiguous shared GTFS stops

• Step 1: Find projected stops

- Step 2: Reduce candidates
 - Based on street names and GTFS stop names
 - Geometrically nearest link only
 - Using Levenshtein distance

- Step 3: Create directed graph
 - Challenge: one GTFS stop generates multiple projected stops (3 having the same <x,y> in this case)

- Step 3: Create directed graph
 - Add projected stop 1 on link with id 1, not coinciding with any node

14

- Step 3: Create directed graph
 - GTFS stop generates projected stops on both directed edges

- Step 3: Create directed graph
 - Add projected stop 1 on link with id 1, coinciding with node 2

- Step 3: Create directed graph
 - Add projected stop 2 on link with id 1, coinciding with node 2

- Step 3: Create directed graph
 - Add projected stop 3 on link with id 2, coinciding with node 2

• Step 3: Create directed graph

19

- Step 4: Assign <u>unambiguous</u> GTFS <u>stops</u>
 - Shortest distance between consecutive stops
 - Does not mean that complete solution for trip is found

- Step 5: Assign ambiguous non-shared unassigned GTFS stops
 - For each GTFS stop exactly one Projected stop is to be chosen such that
 - The sum of the path weights (distances) is minimal over single trip

- Step 6: Assign ambiguous shared GTFS stops
 - For each GTFS stop exactly one Projected stop is to be chosen such that
 - For each bus line, a path in the graph is reconstituted
 - The sum of all bus lines their score is minimal

• Find minimal components for step 5 and step 6

• Find minimal components for step 5 and step 6

Results

- Started with:
 - 3.783.119 nodes
 - 776.483 roads
- OSM Cleaning:
 - Filtering road types
 - Resetting incorrect individual values
 - Auto complete data
 - Reset incorrect values for related quantities
 - Add missing data through rules
 - Remove links with zero length
 - Merge GeneralTransportInfrastructures
 - Merge GeneralLinks
 - Strongly maximum connected subgraph
- Ended with:
 - 2.975.568 nodes (Removed 807.551 in total)
 - 537.271 roads (Removed 239.212 in total)

- : 164.081 roads removed
- : 0 roads
- : 136.071 roads
- : 571.310 roads
- : all roads
- : 25 links removed
- : 72.044 roads merged
- : 178.738 links merged
- : 24.046 nodes removed

Results

- Step 1: Find projected stops
 124.496 projected stops for 31.082 GTFS stops
- Step 2: Reduce candidates

- 3.141 stops assigned

- Step 3: Create directed graph (projected stops)
- Step 4: Assign unambiguous GTFS stops
 - 19.441 stops assigned
- Step 5: Assign ambiguous non-shared GTFS stops
 0 stops assigned
- Step 6: Assign ambiguous shared GTFS stops
 - All the rest (work in progress)

THANKS Visit us @

https://smart-pt.tau.ac.il/

