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Simulation of dynamic transport services 

• Design of novel transport services 

– Flexible 

– Demand-responsive 

– Energy/cost efficient 

 

• High complexity 

– Dynamic demand 

– Dynamic supply 

– Dynamic traffic 

– Multi-modality 

 

• Microscopic large-scale simulation needed 
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Simulation of dynamic transport services 

• MATSim+DVRP 

– Dynamic schedules 

– Fleet included into traffic 

– Online vehicle monitoring 

– Event-driven re-optimization 

– Interaction between the dispatcher, drivers and 
passengers 
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Simulation of dynamic transport services 

• Applications 

– Taxis (Poznan, Berlin, Barcelona) 

– Demand Responsive Transport (Melbourne, Stockholm, Tel 
Aviv, Leuven) 

– Autonomous Vehicles (Singapore, Zurich) 

– Personal Rapid Transport (Berlin) 
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Simulation of taxi services 
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General assumptions 

• Minimize TW 

• Immediate requests 

• No knowledge about the future 

• Online vehicle monitoring 

• Destination unknown a priori 
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Simulation scenario 

• Demand: 1, 1.5, …, 4% of 56,000+ trips 

• Fleet: 25 cabs 

• 6 am – 8 pm 

 

• Traffic at 5 pm 
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Simple dispatching strategies 

Nearest idle taxi 

• taxi call – dispatch the nearest idle taxi or queue 
request 

• dropoff – serve the longest waiting request or wait 

 

Nearest taxi 

• taxi call – assign the nearest available taxi or queue 
request 

• pickup – predict taxi availability, re-assign taxis to 
awaiting requests (first longest waiting) 
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Simple dispatching strategies 
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Simple dispatching strategies 
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Demand-supply balancing 

Nearest idle taxi/waiting request 

• taxi call – dispatch the nearest idle taxi or queue 
request 

• dropoff – serve the nearest waiting request or wait 
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Demand-supply balancing 
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Demand-supply balancing 
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Dynamic assignment problem 

 

 

 

 

 

 

 

 

Assignment 

• taxi call – solve assignment problem 

• pickup – solve assignment problem 14 

    curr curO rmax , max ,ik k ki kc a t a  

  
Waiting 

requests 

Dummy 

requests 

Available 

vehicles 
cik 0 

Dummy 

vehicles 
0 n/a 



Dynamic assignment problem 
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Dynamic assignment problem 

 

1 

2 

3 



Dynamic assignment problem 
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Online exact optimization 

 

 

 

 

 

Taxis 

Requests                               *Destinations known a priori 

 

MIP 

• taxi call – solve MIP 

• pickup – solve MIP 



Online exact optimization 

 

 

 

 

 

 

 

 

• h = |M| 

• T = 60 s 

• Gurobi, 6-core i7 
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Offline exact optimization 
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Conclusions 

• Efficient (quality & time) 

• Flexible (adaptation of cost function) 

– e-taxis 

– zone attractiveness 

• Large-scale scenarios possible 
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